

Organic Chemistry I | Lecture and Lab

Academic Year 2020-2021

Course Information

Course Numbers Total Credits Time Requirement

OCHEM311/OCHEM311L 4 (3 Lecture + 1 Lab) 75 hrs (Lecture 45hrs + Lab 30hrs)

Course Details

Recommended Prerequisites

General Chemistry I and II are highly recommended

Course Description

The course will begin with a review of some of the major concepts in organic chemistry. The chemistry of carbon compounds will be distinguished from inorganic chemistry. The various classes of aliphatic and aromatic compounds will be examined. The diversity of functional groups will be explored with regarding to reactivity and mechanism. Nucleophilic and electrophilic reaction mechanisms will be stressed. Stereochemistry will be explored. Biochemical and physiological analogies will be used throughout the course.

Lecture and Laboratory Communication

A website will be set up on Canvas by your instructor.

Log in with your Username and password: https://scuhs.instructure.com

Faculty Information

Refer to the Canvas course webpage for this information.

Class Meeting Times

Refer to Canvas course webpage for this information.

Instructional Materials

Required Text(s)

Lecture: Organic Chemistry with Biological Topics 6th Edition by Janice Smith and Heidi Vollmer-Snarr

ISBN: 1260516393 (Connect©)

Lab

SCU Organic Chemistry I Laboratory Manual (available on Canvas)

Course Purpose

Student Learning Outcomes

At the conclusion of this course, a successful student should be able to:

- 1. Draw the structure of organic molecules and identify the functional groups (CLO 1-3)
- 2. Analyze the structure of organic compounds by recognizing main functional groups, naming the compounds using the I.U.P.A.C. system, and predicting their properties using the type of bonding, hybridization state, intermolecular forces and stereochemistry. (CLO 6-9)
- 3. Describe mechanisms of reactions: free radical, nucleophilic substitution, elimination and electrophilic addition, and apply this knowledge to predict the major product in organic reactions, such as those involving hydrocarbons, alcohols, alkyl halides, and alkenes. (CLO 10-51)
- 4. Analyze the nature of a reagent: as a nucleophile, free radical, or electrophile and use this knowledge to propose the synthesis of organic compounds, such as hydrocarbons, alkyl halides, alcohols, or alkenes. (CLO 10-51)
- 5. Demonstrate proficiency in organic laboratory skills as they pertain to: chemical information, safe handling, use and disposal of organic compounds; synthetic procedures, including isolation, purification, and structure elucidation of obtained products; stoichiometry and use of instrumentation; and writing of laboratory notebooks and reports in accordance with current scientific journals style. (CLO 1-51)

Course Learning Objectives: Please refer to the appendix for a full list of course objectives.

Course Schedule

(subject to slight modifications by the instructor)

Week	Lecture			Asse	ssment
L	Structure and B	onding		Reading Assignment	
	Acids and bases			Hom	ework
				Quiz	
				Wee	k 1 Exam
2	Introduction to	Organic Molecule	Reading Assignment		
	Alkanes		Homework		
	Stereochemistry	У	Quiz		
				Wee	k 2 Exam
}	Understanding (Organic Reactions	Reading Assignment		
	Alkyl Halides an	d Nucleophilic Su	Homework		
	Alkyl Halides an	d Elimination Rea	Quiz		
			Week 3 Exam		
1	Alcohols, Ethers and Related Compounds			Reading Assignment	
	Alkenes and Alk	ynes	Homework		
				Quiz	
				Wee	k 4 Exam
5	Oxidation and Reduction			Reading Assignment	
	Conjugation, Re	esonance and Dienes		Homework	
	Quiz				
				Week 5 Exam	
Fentati	ve Grading	Procedures			
As	signment	Total Assignments	Points per assignment	Total points	Percentage
Readin	g Assignment	12	10	120	8%
	Quiz	12	25	300	21%
Но	omework	12	20	240	17%
-	Exams (30-50 uestions)	5	150	750	53%
Remote P	Proctoring Video	1	10	10	1
	Total			1420	100%

Lab Schedule

(subject to slight modifications by the instructor)

Laboratory	Assessment
Check-in: Check in/safety	Lab notebook
Experiment 1: Melting Point	Lab notebook
Experiment 2: Thin Layer Chromatography	Quiz 1
Experiment 3: Synthesis of Aspirin	Lab notebook
Experiment 4: Simple Distillation and Fractional Distillation	Lab notebook
	Quiz 2
Experiment 5: Modeling Molecules	Lab notebook
Experiment 6: Analysis Of "Panacetin"	Lab notebook
	Quiz 3
Experiment 7: SN1-Alkyl Halides	Lab notebook
Experiment 8: The Williamson Ether Synthesis	Lab notebook
Review/Checkout	Quiz 4

Tentative Grading Procedures

Lab

Assessment	Points	Weight (%)
Lab Quizzes (4 x 50 points)	200	52
Lab Notebook	180	47
Participation	5	1
Total	385	100

Lab Notebook:

- Pre-Lab: 40% of Total Assignment points (includes title, purpose, hypothesis, materials, procedure, plelab questions and worksheets)
- Post Lab: 50% of Total Assignment points (includes data, observations, calculations, post lab questions and conclusion)
- Neatness, grammar and clarity: 10% of Total assignment points

Grading scale:

Please note letter grades will be assigned only at the end of the trimester.

A = 90% to 100%

B = 80% - less than 90%

C = 70% - less than 80%

D = 60% - less than 70%

F = less than 60%

W = Withdrawal

Grading procedures:

The format of this assessment may include multiple choice, short answer, labelling, fill-in-the-blank, or calculation examinations. Participation points are required and will be assigned by the instructor as the course progresses through your general performance and regards for the rules of the laboratory and safety procedures.

Academic Integrity

Visit SCU's Academic Integrity page to review policies for professionalism and academic integrity.

Teaching Methods and Activities

The course will follow a linear format, meaning you will complete all of the modules in sequence. The material in each module will include a combination of readings, videos, homework, and other exercises. You'll also complete an exam at the end of each module. You can read about each of the course components below. Each module takes about 5 hours to finish.

Introduction: The introduction page goes over the content covered in each module. It outlines the learning objectives and related learning activities. Reading the Introduction will help you identify the central concepts of the module and connect what you will learn to the broader context of the course.

Key Points: Key points contain videos or other interactive assignments related to some of the most important or interesting topics in the chapter. The modules are filled with key point videos. Some videos show fun applications. Some videos are conceptual, and some videos are designed to help you master the calculations in this course.

Lecture Outline: The lecture outline is essentially a series of PowerPoint slides on the most important chapter topics that you should review before you begin the Reading Assignment. These slides will also serve as a good reference when completing homework and reviewing for exams.

Reading Assignment: Read the assigned sections in the chapter fully and complete any activities embedded in the SMARTBOOK reading assignment. Reading time will vary from module to module.

Homework: Homework problems are reflective of the type questions that will be on the Exams. Remember, there is a difference between completing chemistry related word problems with access to help (book, instructor office hours, tutor, Google, etc.) versus completing problems on your own. It is okay and encouraged to use all available resources to learn how to complete a certain type of chemistry problem. However, the long-term goal should be obtaining the ability to complete Exam problems without any aid. First homework must be done using Tegrity.

Check Your Understanding Quizzes: On Check Your Understanding pages, you will practice the module content you've covered using interactive study tools. These interactive study tools will help you assess your progress and identify areas for improvement. Additionally, interactives give you an opportunity to review and apply information presented in your course and in the online textbook before taking quizzes or high-stakes exams.

Exams: There will be one exam per week. There will be questions that are similar to the homework. The Exams are all on Connect. Please pay attention to the due dates. They are final and will not be extended. Exams are on Canvas platform. You must use Tegrity to proctor your exams. You need to have both video and audio on. The recording should be initiated prior to starting the Exam and ends after finishing the test. Your face should be in the field of view. All other programs need to be close on your computer. Cell phones must be turn off before the beginning of the Exams. Make sure you have enough memory on your computer.

Remote Exam Proctoring Orientation Test Video: A 10-20 minute video must be submitted by 11:59 pm the following the first day of class. You can record yourself while completing the first homework. It is incredibly crucial that you provide this video to ensure your computer is working correctly and to confirm your presence in the course. **Students who do not verify their presence will be dropped from the course.**

Required Attire for lab

Close-toed shoes, professional attire and lab coats are mandatory during all lab hours. No shorts, heels, or flip-flops will be allowed in the laboratory; hair longer than shoulder-length must be pulled back and held with a clip or hair tie. Gloves, goggles and additional safety equipment will be required per experiment.

Laboratory Quizzes will be given the week after your experiment and its modality will be indicated by the Professor. These quizzes will be closely based on the reports and prelabs.

Evaluation of Experimental Technique: You will be assessed on your general performance and regards for the rules of the laboratory and safety procedures.

Attendance for lab: Punctual attendance at each of your regularly scheduled laboratory and period is required. Additionally, you are required to stay until you and/or your group have completed the experiment. Check out with your lab instructor before leaving the laboratory after completing the experiment. You are expected to attend every one of your scheduled lab meeting times. However, if you find yourself in a situation where you are unable to attend lab, please email your instructor right away.

Classroom Expectations

Please be professional, prompt, prepared, and polite at all times.

The professor will adhere to all policies as found in the Student Handbook. Cellular phones must be kept on silent during class and lab times. Students may not use a phone as a calculator. As a safety precaution, no food or drinks are allowed inside the lab, but there will be a designated break for eating and drinking outside of the lab.

Best Practices for Studying Chemistry

- Read before and read after each class. Skim the chapter before it is covered in lecture to become comfortable with some of the terms associated with each topic. Review each chapter after it is covered in class to enhance your understanding of what was covered in class.
- Participate during class by taking notes during class and looking over them afterwards. Don't skip class, arrive late, or leave early. Ask questions for clarification when you don't understand the material.
- Stay on top of the homework and assignments. Do the assigned problems as close to the time as when the topic is covered in the class to increase the depth of your understanding of specific concepts and will help you learn the material more efficiently and effectively.
- Do not wait until the night before the homework is due to start the assignment. You will get more out of it if you take the time to really learn the concepts and review the material without being rushed.
- Find a group of students to study with. Seek out students dedicated to doing well in the course. This makes studying more fun and helps you learn the material better by teaching what you know and learning from your peers what you don't know. Explaining these concepts to others will help you learn the material even better.
- Stay focused by finding an environment where you can study with few distractions.

University Policies

Accommodations

As a learning-centered community, Southern California University of Health Sciences recognizes that all students should be afforded the opportunity to achieve their academic and individual potential. The University recognizes and supports the standards set forth in Section 504 of the Rehabilitation Act and

the American with Disabilities Act (ADA). In accordance with its mission and federal and applicable state laws, the University is committed to making reasonable accommodations for qualified applicants for admission and enrolled students with disabilities. A student who needs accommodation(s) due to a disability should contact the Academic Support Office located in the Learning Resource Center.

Faculty and Dr./Patient Relationships

SCU faculty are highly skilled. However, per University Policy, health care is offered to students through the University Health System only. Neither preclinical nor clinical faculty can provide advice, assessment, treatment, or other elements that would be considered part of a Doctor-Patient relationship outside of a clinical setting established for that purpose.

Learning Activities

Students are expected to spend at least two hours for each lecture hour of course time per week in activities and assessments outside the classroom. Examples of activities include, but are not limited to: writing papers; reading articles or text; small group work; presentations; completing assignments; preparation for assessments; online activities and other activities that do not include direct instructor interaction and involvement.

All university policies apply to this course and all others. For full policy information please consult the university SCU Policy Manual. For a quick reference guide to the following policies: make-up examination, F-challenge examination, grade posting, results of failing grades, student support information, syllabus amendments, special needs, student conduct, and attendance, please consult the academic policies document housed on the Online Student Services.

Appendix A: Course Learning Objectives

At the conclusion of this course, a successful student should be able to:

Structure and Bonding

- 1. Examine concepts of general chemistry relevant to organic chemistry principles
- 2. Identify patterns of covalent and ionic bonding with compounds of C, H, O, N, and halogens.
- 3. Draw and interpret the types of structural formulas commonly used in organic chemistry.

Acids and Bases

- 4. Identify acids, bases,
- 5. electrophiles and nucleophiles structures.

Organic Molecules and Functional Groups

- 6. Be able to predict the hybridization and geometry of organic molecules based on their bonding.
- 7. Be able to identify isomers and explain the differences between them.
- 8. Predict general trends in physical properties such as boiling points and solubilities.
- 9. Identify the general classes of organic compounds.

Alkanes

- 10. Be able to draw and name the isomers of alkanes and explain the trends in their physical properties.
- 11. Understand and be able to draw alkane conformations, compare their energies, and predict the most stable conformations.
- 12. Be able to draw and name the isomers of cycloalkanes and explain ring strain.
- 13. Draw the conformations of cycloalkanes, compare their energies, and predict the most stable conformations.

Stereochemistry

- 14. Be able to recognize structures that have stereoisomers and identify the relationships between the stereoisomers.
- 15. Be able to identify chiral structures, draw their mirror images, and identify features that may suggest chirality.
- 16. Identify asymmetric carbon atoms and other stereocenters and assign their configurations.
- 17. Be able to explain the relationships between optical activity and chirality, optical purity, and enantiomeric excess.
- 18. Explain how the different types of stereoisomers differ in their physical and chemical properties.

Understanding organic reactions

- 19. Propose mechanisms and explain the steps for simple reactions such as free-radical halogenation.
- 20. Draw a reaction-energy diagram and use it to identify the factors controlling the thermodynamics and kinetics of a reaction.
- 21. Use the mechanism, thermodynamics, and kinetics of a reaction to predict which of several possible products is the major product.
- 22. Identify reactive intermediates and explain their properties.

Alkyl Halides: Nucleophilic Substitution and Elimination

- 23. Be able to name alkyl halides, explain their physical properties, and describe their common uses.
- 24. Predict the products of substitution and elimination reactions, and explain what factors favor each type of reaction.
- 25. Identify the differences between first-order and second order substitutions and eliminations, and explain what factors determine the order of the reaction.
- 26. Be able to predict which mechanism(s) and product(s) are most likely when reaction conditions are given.

Alcohols

- 27. Determine the structure, name, bonding and physical properties of alcohols.
- 28. Understand the preparation of alcohols, ether and epoxides.
- 29. Be able to convert an alcohol to an alkene though dehydration.
- 30. Be able to convert alcohol to alkyl halides though the use of different reagents.
- 31. Understand the reactions of ether, thiols and sulfides and their applications.

Alkenes

- 32. Draw and name alkenes and cycloalkenes.
- 33. Given a molecular formula, calculate the number of double bonds and rings.
- 34. Explain how the stability of alkenes depends on their structures.
- 35. Be able to show how alkenes can be synthesized by eliminations from alkyl halides and alcohols.
- 36. Explain why electrophilic additions are among the most common reactions of alkenes.
- 37. Predict the products of the reactions of alkenes, including the orientation of the reaction (regiochemistry) and the stereochemistry.
- 38. Be able to propose mechanisms to explain the observed products of alkene reactions.
- 39. Be able to use retrosynthetic analysis to solve multistep synthesis problems with alkenes as reagents, intermediates, or products.

Alkynes

- 40. Determine the structure, name, bonding and physical properties of alkynes.
- 41. Be able to synthesize alkynes.
- 42. Understand Alkyne Reactions
- 43. Identify the atoms or compound that can be added to alkynes
- 44. Understand oxidation of alkynes
- 45. Understand the reaction of Acetylide Anions

Oxidation and Reduction

- 46. Identify the compounds used as reducing agents.
- 47. Understand the reduction of Alkenes alkynes and CX bonds.
- 48. Identify the compounds used as Oxidizing Agents
- 49. Understand epoxidation and dihydroxylation
- 50. Understand how oxidative cleavage can happen with alkenes and alkynes.
- 51. Perform oxidation on alcohols