

General Chemistry II | Lecture and Lab

Academic Year 2020-2021

Course Information

Course Numbers

CHEM216/CHEM216L

Total Credits 4 (3 Lecture + 1 Lab) Time Requirement 75 hrs (Lecture 45hrs + Lab 30hrs)

Course Details

Recommended Prerequisites

General Chemistry I Lecture/Lab (CHEM211 and CHEM211L) or equivalent.

Course Description

This course is the second in a two-part series, which further develops the concepts of chemical bonding to appreciate the size, shape, polarity, and macroscopic behavior of molecules. The processes of oxidation-reduction will be explained, mainly as they apply to biological systems. Solution chemistry will be introduced, stressing the concepts of equilibrium and colligative properties. Acid/base chemistry, including titrations, buffers, and pH will be studied. Organic chemistry will be introduced as a corollary to concepts presented in the college chemistry course.

Lecture and Laboratory Communication

A website will be set up on Canvas by your instructor. Log in with your Username and password: <u>https://scuhs.instructure.com</u>

Faculty Information

Refer to the Canvas course webpage for this information.

Class Meeting Times

Refer to Canvas course webpage for this information.

Instructional Materials

Required Text(s)

Lecture: Lecture: *General Chemistry-Chemistry: The Molecular Nature of Matter and Change*-Silberberg/Amateis, 9e(Connect©) (ISBN: 1260477371). An electronic textbook is provided to students through Canvas.

Lab: SCU General Chemistry Laboratory Manual (available on Canvas)

Provided Materials: PPE (Personal Protection Equipment): UVEX goggles, gloves, and flame-resistant lab coat.

Required Attire: Close-toed shoes, professional attire and lab coats are mandatory during all lab hours. No shorts, heels, or flip-flops will be allowed in the laboratory; hair longer than shoulder-length must be pulled back and held with a clip or hair tie. Gloves, goggles and additional safety equipment will be required per experiment.

Course Purpose

Student Learning Outcomes

At the conclusion of this course, a successful student should be able to:

- 1. Demonstrate thorough knowledge and understanding of the fundamental principles and core concepts of General Chemistry II. (CLO 1-73)
- 2. Recall the basic principles in the areas of thermodynamics, reaction rates, electrochemistry and buffers. (CLO 14, 73)
- 3. Solve chemical problems involving kinetics, equilibrium, thermodynamics and electrochemistry. (CLO 14-73)
- 4. Demonstrate proficiency in assembling basic laboratory glassware, performing fundamental laboratory techniques, making and recording relevant experimental observations and interpreting the results. (CLO 1,4-7, 13, 19-22, 28-29, 31-48, 33-54)

Course Learning Objectives: Please refer to the appendix for a full list of course objectives.

Course Schedule

(subject to slight modifications by the instructor)

The reading chapters refer to the Silberberg textbook.

Course Schedule

(subject to slight modifications by the instructor)

Week	Lecture	Assessment
1	Intermolecular Forces: Liquid, Solids and Phase	Reading Assignment, Module Quiz, Practice
		Exam 1
2	The Properties of Mixture: Solution and Colloids Kinetics: Rates and Mechanism of Chemical Reactions	Reading Assignment, Module Quiz, Practice Exam 2
3	Equilibrium: The Extent of Chemical Reactions Acid-Base Equilibria	Reading Assignment, Module Quiz, Practice Exam 3
4	Ionic Equilibria in Aqueous Systems Thermodynamics: Entropy, Free energy and Reaction Direction	Reading Assignment, Module Quiz, Practice Exam 4
5	Electrochemistry: Chemical Change and Electrical Work	Reading Assignment, Module Quiz, Practice Exam 5

Tentative Grading Procedures

Lecture

Assignment	Total assignments	Points per assignment	Total points	Percentage
Reading Assignment	8	10	80	8%
Module Quiz	8	25	200	21%
Homework	8	20	160	17%
Weekly Exams (30-50 questions)	5	100	500	52%
Remote Exam Proctoring orientation	1	10	10	1
Total			950	100%

Lab Schedule

(subject to slight modifications by the instructor)

Laboratory	Assessment
Check-in: Check in/safety	Lab notebook
Worksheet for math review	
Experiment 1: Preparation of Solutions	Lab notebook
Experiment 2: Chemical Kinetics Iodine Clock	Quiz 1
Experiment 3: Lê Chateliers Principle	Lab notebook
Experiment 4: Hydrolysis, Weak Acids and Buffers	Lab notebook
Experiment 5: Standardization of NaOH and Titration of Sulfuric acid	Lab notebook
	Quiz 2
Experiment 5: Standardization of NaOH and Titration of Sulfuric acid/Titration worksheet	Lab notebook
Experiment 6: Weak Acid Ksp	Lab notebook
	Quiz 3
Experiment 7: TBD Electrochemistry and Redox Reactions	Lab notebook
Review/Checkout	Quiz 4

Tentative Grading Procedures

Assessment	Points	Weight (%)
Lab Quizzes (4 x 50 points)	200	53
Lab Notebook (7 x 20)	140	37
Worksheets (2 x 15)	30	8
Participation	5	1
Total	375	100%

Lab Notebook:

Lab

- Pre-Lab: 45% of Total Assignment points (includes title, purpose, hypothesis, materials and procedure)
- Post Lab: 45% of Total Assignment points
- Neatness, grammar and clarity: 10% of Total assignment points

Grading scale:

Please note letter grades will be assigned only at the end of the trimester.

- **A** = 90% to 100%
- **B** = 80% less than 90%
- **C** = 70% less than 80%
- **D** = 60% less than 70%
- **F** = less than 60%
- **W** = Withdrawal

Grading procedures:

The format of assessments may include multiple choice, short answer, labelling, fill-in-the-blank, or matching examinations. Participation points are required and will be assigned by the instructor as the course progresses through the use of any of the following: in class mini quizzes, activities, kahoot online quizzes (www.kahoot.it). For online quizzes students must have a phone, tablet, laptop or other internet connected device to participate. Students must be in class during the participation activities to receive participation marks.

Academic Integrity

Visit SCU's Academic Integrity page to review policies for professionalism and academic integrity.

Teaching Methods and Activities

Introduction: The introduction page goes over the content covered in each module. It outlines the learning objectives and related learning activities. Reading the Introduction will help you identify the central concepts of the module and connect what you will learn to the broader context of the course.

Key Points: Key points contain videos or other interactive assignments related to some of the most important or interesting topics in the chapter. The modules are filled with key point videos. Some videos show fun applications. Some videos are conceptual, and some videos are designed to help you master the calculations in this course.

Lecture Outline: The lecture outline is essentially a series of PowerPoint slides on the most important chapter topics that you should review before you begin the Reading Assignment. These slides will also serve as a good reference when completing homework and reviewing for exams.

Reading Assignment: Read the assigned sections in the chapter fully and complete any activities embedded in the LEARNSMART reading assignment. Reading time will vary from module to module.

Homework: Homework problems are reflective of the type questions that will be on the Exams. Remember, there is a difference between completing chemistry related word problems with access to help (book, instructor office hours, tutor, Google, etc.) versus completing problems on your own. It is okay and encouraged to use all available resources to learn how to complete a certain type of chemistry problem. However, the long-term goal should be obtaining the ability to complete Exam problems without any aid. First homework must be done using Tegrity.

Check Your Understanding: On Check Your Understanding pages, you will practice the module content you've covered using interactive study tools. These interactive study tools will help you assess your progress and identify areas for improvement. Additionally, interactives give you an opportunity to review and apply information presented in your course and in the online textbook before taking quizzes or high-stakes exams.

Exams: There will be one exam per week. There will be questions that are similar to the homework. The Exams are all on Connect. Please pay attention to the due dates. They are final and will not be extended. Exams are on Canvas platform. You must use Tegrity to proctor your exams. You need to have both video and audio on. The recording should be initiated prior to starting the Exam and ends after finishing the test. Your face should be in the field of view. All other programs need to be close on your computer. Cell phones must be turn off before the beginning of the Exams. Make sure you have enough memory on your computer.

Remote Exam Proctoring Orientation Test Video: A 10-20 minutes video must be submitted by 11:59 pm following the first day of class. You can record yourself while completing the first homework. It is incredibly crucial that you provide this video to ensure your computer is working correctly and to confirm your presence in the course. **Students who do not verify their presence will be dropped from the course.**

Best Practices for Studying Chemistry

- Read before and read after each class. Skim the chapter before it is covered in lecture to become comfortable with some of the terms associated with each topic. Review each chapter after it is covered in class to enhance your understanding of what was covered in class.
- Participate during class by taking notes during class and looking over them afterwards. Don't skip class, arrive late, or leave early. Ask questions for clarification when you don't understand the material.
- Stay on top of the homework and assignments. Do the assigned problems as close to the time as when the topic is covered in the class to increase the depth of your understanding of specific concepts and will help you learn the material more efficiently and effectively.
- Do not wait until the night before the homework is due to start the assignment. You will get more out of it if you take the time to really learn the concepts and review the material without being rushed.
- Find a group of students to study with. Seek out students dedicated to doing well in the course. This makes studying more fun and helps you learn the material better by teaching what you know and learning from your peers what you don't know. Explaining these concepts to others will help you learn the material even better.
- Stay focused by finding an environment where you can study with few distractions.

University Policies

Accommodations

As a learning-centered community, Southern California University of Health Sciences recognizes that all students should be afforded the opportunity to achieve their academic and individual potential. The University recognizes and supports the standards set forth in Section 504 of the Rehabilitation Act and

the American with Disabilities Act (ADA). In accordance with its mission and federal and applicable state laws, the University is committed to making reasonable accommodations for qualified applicants for admission and enrolled students with disabilities. A student who needs accommodation(s) due to a disability should contact the Academic Support Office located in the Learning Resource Center.

Faculty and Dr./Patient Relationships

SCU faculty are highly skilled. However, per University Policy, health care is offered to students through the University Health System only. Neither preclinical nor clinical faculty can provide advice, assessment, treatment, or other elements that would be considered part of a Doctor-Patient relationship outside of a clinical setting established for that purpose.

Learning Activities

Students are expected to spend at least two hours for each lecture hour of course time per week in activities and assessments outside the classroom. Examples of activities include, but are not limited to: writing papers; reading articles or text; small group work; presentations; completing assignments; preparation for assessments; online activities and other activities that do not include direct instructor interaction and involvement.

All university policies apply to this course and all others. For full policy information please consult the university SCU Policy Manual. For a quick reference guide to the following policies: make-up examination, F-challenge examination, grade posting, results of failing grades, student support information, syllabus amendments, special needs, student conduct, and attendance, please consult the academic policies document housed on the **Online Student Services**.

Course Learning Objectives:

At the conclusion of this course, a successful student should be able to:

Liquids, Solids, and Intermolecular Forces

- 1. Distinguish the difference between the characteristics of solids, liquids and gases.
- 2. Identify the Intermolecular Forces that hold condensed states together.
- 3. Understand how intermolecular are involved in Viscosity, Surface Tension, and Capillary Action.
- 4. Understand the process of Vaporization and Vapor Pressure.
- 5. Identify the differences between Sublimation and Fusion.
- 6. Understand Heating Curves and perform calculations.
- 7. Understand how to draw and read Phase Diagrams.

Solutions

- 8. Understand how Solutions are formed and how Intermolecular Forces are involved.
- 9. Understand the energy are involved in a Solution Formation.
- 10. Understand the factors that affect solubility of solutions.
- 11. Calculate Solution Concentrations using different units.
- 12. Identify and calculate Colligative Properties.
- 13. Understand Colligative Properties of Strong Electrolyte Solutions.

Kinetics

- 14. Determine the factors that influence the rate of a reactions
- 15. Express average rate and instantaneous rate.
- 16. Calculate rate of reaction based on initial concentrations.
- 17. Determine the overall order of a reaction.
- 18. Calculate the half-life of a reaction.
- 19. Determine how concentration changes over time by using integrated rate laws.
- 20. Determine how temperature and concentration affects the rate of the reactions
- 21. Understand the role a catalyst plays in a reaction
- 22. Determine the rate of a reactions though reactions mechanism.

Chemical Equilibrium

- 23. Calculate the Equilibrium Constant of a reaction.
- 24. Calculate the reaction Quotient of a reaction.
- 25. Understand how to express equilibrium with pressure.
- 26. Understand the relationship between K_c and $K_{p.}$
- 27. Compare Q and K to determine the direction of the reaction.
- 28. Solve equilibrium problems when initial concentrations are given.
- 29. Understand Le Chateliers' Principle by determining how Change in concentration, pressure temperature and catalyst will affect equilibrium.

Acids and Bases

- 30. Understand what causes heartburn.
- 31. Understand the Arrhenius definition of acids and bases.
- 32. Understand the definition of Bronsted-Lowry acids and bases.
- 33. Understand the strength of acids and perform calculations using the Acid Ionization Constant (K_a).
- 34. Understand the Autoionization of water
- 35. Perform pH calculations, of Strong Acids and Strong Bases.

- 36. Calculate $[H_3O^+]$ and $[OH^-]$ of Strong Acids and Strong Bases.
- 37. Calculate Percent Ionization of a Weak Acids.
- 38. Calculate $[H_3O^+]$ and $[OH^-]$ of Weak Acids and Weak Bases.
- 39. Understand Acid-Bases properties of Ions and Salts.
- 40. Calculate pH of Polyprotic Acids.
- 41. Understand the Strength and molecular structure of Acids.

Aqueous Ionic Equilibrium

- 42. Understand the definition of buffers.
- 43. Calculate the pH of Buffer Solutions.
- 44. Perform pH Buffer calculations using Henderson-Hasselbalch Equation.
- 45. Calculate pH of Buffer solutions containing base and its conjugate acid.
- 46. Understand the Effectiveness of a buffer by understanding Buffer Ran and Buffer Capacity.
- 47. Perform Titration calculations of Strong Acid and Strong Base.
- 48. Perform Titration calculation of Weak Acid and Strong Base
- 49. Understand Titrations curves.
- 50. Understand Titrations of a Polyprotic Acids.
- 51. Perform Solubility Equilibria calculations.
- 52. Understand Selective Precipitations.
- 53. Understand Qualitative Chemical Analysis
- 54. Preform Complex Ion Equilibria Calculations.

Free Energy and Thermodynamics

- 55. Understand Spontaneous and Nonspontaneous Processes.
- 56. Underhand the First Law of Thermodynamics.
- 57. Be able to explain Entropy and the relationship it has to the Second Law of Thermodynamics.
- 58. Understand how temperature affects Entropy.
- 59. Perform Entropy calculations.
- 60. Calculate Gibbs Free Energy.
- 61. Understand the Third Law of Thermodynamics.
- 62. Calculate Free energy of Chemical Reactions.
- 63. Calculate Free energy for Nonstandard States.
- 64. Perform calculations relating standard and nonstandard conditions.

Electrochemistry

- 65. Be able to balance Oxidation-Reduction Equations
- 66. Understand Voltaic Cells and how they generate electricity.
- 67. Be able to draw Voltaic Cells.
- 68. Understand how to write Electrochemical Electrode Cell Notations.
- 69. Calculate Standard Electrode Potentials.
- 70. Calculate concentration of cell potentials.
- 71. Understand how batteries generate electricity.
- 72. Understand how to predict products of Electrolysis.
- 73. Perform Stoichiometry of Electrolysis.